Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(33): e2304992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737626

RESUMO

Geometric phase enabled by spin-orbit coupling has attracted enormous interest in optics over the past few decades. However, it is only applicable to circularly-polarized light and encounters substantial challenges when applied to wave fields lacking the intrinsic spin degree of freedom. Here, a new paradigm is presented for achieving geometric phase by elucidating the concept of topological complementary pair (TCP), which arises from the combination of two compact phase elements possessing opposite intrinsic topological charge. Twisting the TCP leads to the generation of a linearly-varying geometric phase of arbitrary order, which is quantified by the intrinsic topological charge. Notably distinct from the conventional spin-orbit coupling-based theories, the proposed geometric phase is the direct result of the cyclic evolution of orbital-angular-momentum transformation in mode space, thereby exhibiting universality across classical wave systems. As a proof of concept, the existence of this geometric phase is experimentally demonstrated using scalar acoustic waves, showcasing the remarkable ability in the precise manipulation of acoustic waves at subwavelength scales. These findings engender a fresh understanding of wave-matter interaction in compact structures and establish a promising platform for exploring geometric phase, offering significant opportunities for diverse applications in wave systems.

2.
Phys Rev E ; 105(6-1): 064116, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854510

RESUMO

We study the explosive percolation with k-mer random sequential adsorption (RSA) process. We consider both the Achlioptas process (AP) and the inverse Achlioptas process (IAP), in which giant cluster formation is prohibited and accelerated, respectively. By employing finite-size scaling analysis, we confirm that the percolation transitions are continuous, and thus we calculate the percolation threshold and critical exponents. This allows us to determine the universality class of the k-mer explosive percolation transition. Interestingly, the numerical simulation suggests that the universality class of the explosive percolation transition with the AP alters when the k-mer size changes. In contrast, the universality class of the transition with the IAP is independent of k, but it differs from that of the RSA without the IAP.

3.
Phys Rev E ; 105(3-1): 034128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428105

RESUMO

We study quantum phase transitions in Heisenberg antiferromagnetic chains with a staggered power-law decaying long-range interactions. Employing the density-matrix renormalization group (DMRG) algorithm and the fidelity susceptibility as the criticality measure, we establish more accurate values of quantum critical points than the results obtained from the spin-wave approximation, quantum Monte Carlo, and DMRG in literatures. The deviation is especially evident for strong long-range interactions. We extend isotropic long-range interactions to the anisotropic cases and find that kaleidoscope of quantum phases emerge from the interplay of anisotropy of the long-range exchange interaction and symmetry breaking. We demonstrate nonfrustrating long-range interactions induce the true long-range order in Heisenberg antiferromagnetic chains with a continuous symmetry breaking, lifting the restrictions imposed by the Mermin-Wagner theorem.

4.
Phys Rev E ; 102(3-1): 032127, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33076042

RESUMO

In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawtooth chain. The competing exchange interactions between the nearest neighbors and the second neighbors stabilize the semimetallic ground state in terms of spinless fermions, and give rise to a rich phase diagram, which consists of three gapless phases. We find distinct phases are characterized by the number of Weyl nodes in the momentum space, and such changes in the topology of the Fermi surface without symmetry breaking produce a variety of Lifshitz transitions, in which the Weyl nodes situating at k=π change from type I to type II. A coexistence of type-I and type-II Weyl nodes is found in phase II. The information measures including concurrence, entanglement entropy, and relative entropy can effectively signal the second-order transitions. The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.

5.
J Phys Condens Matter ; 30(10): 105301, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29447124

RESUMO

We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.

6.
J Phys Condens Matter ; 29(44): 445703, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28853709

RESUMO

Quantum simulation is a promising approach to understanding complex strongly correlated many-body systems using relatively simple and tractable systems. Photon-based quantum simulators have great advantages due to the possibility of direct measurements of multi-particle correlations and ease of simulating non-equilibrium physics. However, interparticle interaction in existing photonic systems is often too weak, limiting the potential for quantum simulation. Here we propose an approach to enhance the interparticle interaction using exciton-polaritons in MoS2 monolayer quantum dots embedded in 2D photonic crystal microcavities. Realistic calculation yields optimal repulsive interaction in the range of 1-10 meV-more than an order of magnitude greater than the state-of-the-art value. Such strong repulsive interaction is found to emerge neither in the photon-blockade regime for small quantum dot nor in the polariton-blockade regime for large quantum dot, but in the crossover between the two regimes with a moderate quantum-dot radius around 20 nm. The optimal repulsive interaction is found to be largest in MoS2 among commonly used optoelectronic materials. Quantum simulation of strongly correlated many-body systems in a finite chain of coupled cavities and its experimental signature are studied via the exact diagonalization of the many-body Hamiltonian. A method to simulate 1D superlattices for interacting exciton-polariton gases in serially coupled cavities is also proposed. Realistic considerations on experimental realizations reveal advantages of transition metal dichalcogenide monolayer quantum dots over conventional semiconductor quantum emitters.

7.
J Phys Condens Matter ; 29(22): 225804, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28474603

RESUMO

We consider a class of one-dimensional compass models with staggered Dzyaloshinskii-Moriya exchange interactions in an external transverse magnetic field. Based on the exact solution derived from Jordan-Wigner approach, we study the excitation gap, energy spectra, spin correlations and critical properties at phase transitions. We explore mutual effects of the staggered Dzyaloshinskii-Moriya interaction and the magnetic field on the energy spectra and the ground-state phase diagram. Thermodynamic quantities including the entropy and the specific heat are discussed, and their universal scalings at low temperature are demonstrated.

8.
J Phys Condens Matter ; 28(49): 496001, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27748270

RESUMO

We investigate the energy dynamics in a generalized compass chain under an external magnetic field. We show that the energy current operators act on three contiguous sites in the absence of the magnetic field, and they are incorporated with inhomogenous Dzyaloshinskii-Moriya interactions in the presence of the magnetic field. Under these complex interactions the Hamiltonian remains an exactly solvable spin model. We study the effects of the three-site interactions and the Dzyaloshinskii-Moriya interactions on the energy spectra and phase diagram. The results have revealed that the energy current of the pristine quantum compass model is conserved due to the associated intermediate symmetries, and for other general cases such a characteristic does not exist.

9.
Sci Rep ; 6: 23211, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26980163

RESUMO

Based on a one-dimensional valley junction model, the effects of intervalley scattering on the valley transport properties are studied. We analytically investigate the valley transport phenomena in three typical junctions with both intervalley and intravalley scattering included. For the tunneling between two gapless valley materials, different from conventional Klein tunneling theory, the transmission probability of the carrier is less than 100% while the pure valley polarization feature still holds. If the junction is composed of at least one gapped valley material, the valley polarization of the carrier is generally imperfect during the tunneling process. Interestingly, in such circumstance, we discover a resonance of valley polarization that can be tuned by the junction potential. The extension of our results to realistic valley materials are also discussed.

10.
J Phys Condens Matter ; 27(20): 205601, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25950245

RESUMO

In the present work, we investigate the intrinsic relation between quantum fidelity susceptibility (QFS) and the dynamical structure factor. We give a concise proof of the QFS beyond the perturbation theory. With the QFS in the Lehmann representation, we point out that the QFS is actually the negative-two-power moment of dynamical structure factor and illuminate the inherent relation between physical quantities in the linear response theory. Moreover, we discuss the generalized fidelity susceptibility (GFS) of any quantum relevant operator, that may not be coupled to the driving parameter, and present similar scaling behaviors. Finally, we demonstrate that the QFS cannot capture the fourth-order quantum phase transition in a spin-1/2 anisotropic XY chain in the transverse alternating field, while a lower-order GFS can seize the criticalities.

11.
J Phys Condens Matter ; 27(16): 165602, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25817273

RESUMO

Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

12.
J Phys Condens Matter ; 27(10): 105602, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25707024

RESUMO

We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.

13.
Nanoscale ; 6(19): 11121-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25214422

RESUMO

We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method. A giant magnetoresistance is obtained in the pristine even-width ZαGNRs and can be as high as 10(6)%. However, for the doped systems, a large magnetoresistance behavior may appear in the odd-width ZαGNRs rather than the even-width ones. This suggests that the magnetoresistance can be manipulated in a wide range by the dopants on the edges of ZαGNRs. Another interesting phenomenon is that in the B- and N-doped even-width ZαGNRs the spin Seebeck coefficient is always larger than the charge Seebeck coefficient, and a pure-spin-current thermospin device can be achieved at specific temperatures.

14.
Nanotechnology ; 23(50): 505204, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23197314

RESUMO

We have theoretically studied the collective response properties of the two-dimensional chiral electron gas in bilayer graphene within the random phase approximation. The cooperation of external controlling factors such as perpendicular electric bias, temperature, doping, and substrate background provides great freedom to manipulate the dynamic dielectric function and the low-energy plasmon dispersion of the system. Intriguing situations with potential application are systematically explored and discussed. Extra undamped plasmon modes might emerge under electric bias. They have almost zero group velocities and are easy to manipulate.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 022101, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930088

RESUMO

Motivated by the growing importance of fidelity in quantum critical phenomena, we establish a general relation between the fidelity and structure factor of the driving term in a Hamiltonian through the concept of fidelity susceptibility. Our discovery, as shown by some examples, facilitates the evaluation of fidelity in terms of susceptibility using well-developed techniques, such as density matrix renormalization group for the ground state, or Monte Carlo simulations for the states in thermal equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...